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Abstract. The finite-size corrections for the anisotropic Heisenberc model in the gap region are 
calculated using an exact integral representation based on the Bethe ansatz equations (BAK). The 
energy corrections are determined by saddle-point approximations for states without complex 
roots. The case of symmetric states is discussed in greater detail. 

1. Introduction 

The calculation of finite-size corrections for an exactly integrable model is of interest for 
a number of reasons. For critical models the energy corrections are closely related to 
important parameters like central charge or operator dimensions and, besides its intrinsic 
interest, the treatment of lattice models for finite but large N can give important insights 
into finite-size studies for both integrable and non-integrable theories. 

In this paper we will study the anisotropic Heisenberg chain (xxz) in its 
antiferromagnetic (non-critical) region; this is an example of an integrable theory with 

Despite the fact that there is, up to now, no relation between the energy corrections for 
the lowest states and physically interesting parameters, it is worthwhile examining them in 
detail. We expect the corrections to be more stable compared to the critical region, which 
makes use of rather involved techniques like the Wiener-Hopf [1,2] unnecessary. However, 
the calculations for excited states using saddle-point approximations meet several technical 
problems that need to be handled with care. 

In section 2 we present our definitions, the BAE and their integral representation. 
Section 3 deals with the saddle-point approximation for the energy corrections of excited 
states. In section 4 the results are obtained for states without complex roots and in greater 
detail for the symmetric states present. Our conclusions are contained in section 5. 

2. The XXZ model and its BAE 

We use the Hamiltonian 

a gap. 
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with the parametrization 
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A=-coshy A c - I .  

The BAE then takes the form 
N 

sin& + i iy )  sin& - AW + iy) 
(sin& - iiy)) = - k l  n sin(Aj - kk - iy) 

j = 1 ... p .  (2.3) 

I Re(Aj)l < 7c/2 is limited due to periodicity. The energy per site of a state of p magnons 
is given by 

sinh*y 2 E(N) = -- 
N cosh y - cos2Aj. 

Following [3] and [4] we introduce the function 

sin(z + ior) 
4(z, or) = ilog 0 sin(z - ior) 

(2.4) 

(2.5) 

with its usual cut Structure for non-real z. For a real root ?.j the BAE can be rewritten in 
the form 

where the first sum includes all real roots and the second sum includes all complex pairs. 
For large N they assemble into two-strings 

Y = a c + i -  
2 

the quartets 

t, = U, + irC uc rt i(y - rc) 0 < r, < y 

and the wide pairs [31 

t ,=u,fi t ,  rw > Y. 

In the thermodynamic limit N + 00 system (2.6) can be easily solved when the positions 
of the complex roots and holes (generated by 'unoccupied' Ih)  are fixed. The density for 
the ground state is 

with 

The argument of the elliptic modulus k is given by the relation 
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The density correction for the holes is 

with 

Using 
1 d l  dZN 

UN@) = -- E - 
N d h  dh 

(2.10) 

(2.11) 

(2.12) 

one can define an analogue of the thermodynamic density on the basis of the counting 
function 

(2.13) 

for finite N. The appropriate limit is provided by equation (2.6). 

E(N): 
In [4J, exact integral representations have been derived for this density and the energy 

where Em denotes, as usual, the energy per site calculated in the limit where all finite-size 
corrections are disregarded. Also, 

where 
E(&) = 2 ~ ~ z ( h )  (2.17) 

is the energy contribution of a single hole becoming additive in this limit, and E E  is the 
bulk contribution to the ground state. 

The complex roots have formally dropped out; however, one has to keep in mind that 
their positions influence the real roots and their holes via BAE. 

Formulae (2.14) and (2.15) are the starting point of our analysis. 

3. The saddle-point approximation 

We now consider integrals of the type emerging in equations (2.14) and (2.15): 
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with a periodic function f ( A +  n) = f(1). With the new variable z = Z N ( A )  one obtains 
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with z k  = (k + $/N,k = 1,2,. . . , M + Nh = ~P. After the Fourier expansion of the 
&function 

we write 

(3.3) 

(3.4) 

In this sum every term can be calculated using a saddle-point approximation for large N 
where it is dominated by the solutions of 

(3.5) _ -  dzN - U N ( A )  = 0 
dA 

in the complex A-plane. 

following way (see figure 1): 
It is, therefore, useful to deform the integration contour in representation (3.4) in the 

Figure 1. The integration contours C+ and C- in the complex A-plane. 

The integrals on the two vertical lines cancel each other and the pole contributions result 
from possible poles in the upper and lower rectangles respectively (see below). 

Returning to the a-expressions 

dA f (A)uN(A)eZniNurN(A) - 5 dA f(A)uN(A)e-2"iN"zN(A) 
C. e= I 
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+ pole contributions (3.7) 
we see that for real f ( h )  the second term is the complex conjugate of the first, which we 
will now consider: - 

 IN,^ = - [ dhf(h)U"(h)ezlriNaLN". (3.8) 
C+ - 

We have shown that the replacement of UN by am and Z N  by zm causes an error in  IN,^ of 
the order kyN with kl = ((1 - k')/k)'. 

In [4], integral (3.6) has been calculated (after the replacement above) for the ground 
state without further approximation, leading to the energy correction 

We have repeated the calculations for the ground state using a saddle-point approximation 
and quote the main results. The same method will be used below for excited states where 
no analytic procedure can be applied. 

The solution of = 0, that is the stationary points, is given by 
*me - - pc I + i i y  mod (x,  iy) (3.10) 

and we introduce A: = i y / 2  + ir/2 for those points on the contour C+. Also, one has 

z x ,  * 1 - - In&. (3.11) 

After applying the standard saddle-point approximation technique [5] we obtain the 
asymptotic expansion for N + 00: 

* 

(3.12) 

with the coefficients ah') and a:') defined as 

The dominant contribution comes from the term with IY = 1, so we will neglect the other 
terms with higher a. 

For the energy from relation (2.15), the result (3.9) follows where the first non-vanishing 
correction comes from v = 2. Up to now the pole contributions from equation (3.6) have 
been neglected. Using 

(3.14) 

and the definition of ZN(A)  one obtains the BAE poles for all complex roots with h($d < 
y/2.  Their residuals are given by 

(3.15) 
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From the numerator in equation (3.14) we have another type of pole at A = c k  + iy 
for all complex #k with Im(& + iy) < y / 2 ,  which has residuals -N-'. Thus, only the 
close roots contribute and which far large N group in quartets. The pole contributions in 
equation (3.6) are, therefore, given by 

Taking into account the formation of quartets, we are left with the deviations from an exact 
quartet structure for finite N .  A detailed analysis of those terms can be given only after the 
corrections to the higher level BAE have been found. This fact motivates us to restrict our 
analysis to states without complex roots. 

We now retum to equation (3.8) with N = CO and consider the first general excited 
states. zm(A) is no longer equal to zz(A) but has corrections corresponding to 

Z m G )  ZZ + - @(A - eh ,  Y )  - cW(A - ti, V )  + @(A - E r ,  Y ) I  
2rrN L N h  h=l I 

- r ( g h ( f i )  u c ( f i )  + ' Jw( f i ) )@(A - f i ,  Y )  dfi . I 

I 

-n/2 

With the notation 
Ni. 

h(A) = i c@(A - eh7 Y) - cl@(A -51 ,  Y )  + @(A - gi, Y)) 

- T(u~(P) + oi(fi) + o;v(P))@(A - Y )  dfi 

[,=, I 

- r j2  

we can rewrite (3.8) as 

f ~ , ~  = - J dA f(A)um(h)e2""Qz~'.')+uh" + O(k" I )  

C+ 

= - 1 dh f (h)e"h(")um(A)e2"'N~z~(") + O(k" I 1. (3.19) 
C+ 

Thus, this integral can be treated by our former method based on the saddle points of z z ( A )  
using the replacement f (A) + f @)eh("' if eh(.') is holomorphic in a region containing C+. 
Furthermore, um(A) now includes terms depending on N which must be included in the 
analysis. We have checked that all those requirements are fulfilled. 

(3.17) 

(3.18) 

4. Energy corrections for states with real roots 

Motivated by the above analysis, we consider states without complex roots so that holes in 
the real root distribution are the only excitations left. We analyse the analytical properties 
of uh(A) defined through equations (2.10) and (2.1 1). 

With the definitions 
-2y+2ii ZI = e  

Z2 = e-2y-2iA 

q 0 < 141 < 1 (4.1) 
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we derive 

PO) = -; +$[z@Pr(q, -1, - 4 ; 4 , Z l ) + L @ l ( q l  -1, -q;q.z2)1 (4.2) 

where zQl(a1, a2, bl; q .  z )  is the q-analogue of the well known hypergeometric function 
2Q1(al,n2, bl; z)  [6]. We only need the case 

(4.3) 

The analytic properties of these basic hypergeometric series are found in [7]. It now follows 
that oh@) is a holomorphic function in the region of integration. 

Now, we can write down the energy correction 

E(N) - Em = 7.z sinh y dh ( u ~ ( h ) ) 2 e h ( A ) e u r i ~ z ~ ( A )  

(4.4) M A )  k i N z 3 A )  + cc+ O(kp), 

s 
C+ 

/dAuE(h)uh(h)e e 

e+ 
To produce an expression like (3.12) we use (3.13) for the general coefficients. For the 
coefficients of the first term in equation (4.4) we obtain 

where in the last line a,?/') are the coefficients for the ground state which have been 

and causes a term of order k:/2N-3/2. The analysis of the second term in equation (4.4) 
gives a leading behaviour of order k:/2N-S/2 confirming the superficial analysis that these 
terms are suppressed by 1,". Hence, 

calculated previously. The leading contribution is given by U = ~ 2  with a2 -(l/2) - - p(A:),;/Z) 
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It is straightforward to use a Fourier series expansion: 

W (-1)'" coshmy . Fz(w = + sin 2mek 
m=l 

W (-1)'" sinhmy 
F3('9k) = ehy + cos 2m&. 

m=l 

To our knowledge only F2 is related to any known functions 181: 

Thus, 

exp(h(h;)) + exp(h(A;)) = 2(-l)Nk1zexp --y exp 2 c F 3 ( e h )  ( ' )  ) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Together with equation (4.6) this gives the final answer to our problem: the leading energy 
correction for states with an arbitrary distribution of holes. 

Making the result more evident, we consider low excitations (Nh = 2) and symmetric 
states (01 = -02). The odd functions FI and Fz drop out and we are left with the even 
function F3(0), 0 < 0 <, zj2,  which will be analysed below. For these states we have 
obtained 

m 
E ( N )  - Em = p K ( k )  sinh 2 e - Y  exp(4F3(0)) + 0 (4.14) 

With the help of formula (4.3), F3(0) can be defined using integrals of basic hypergeometric 
series as 
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z3 = -e-~-2i0 

~~ = -e-3~-ZiE 

q = e-+ 0 < 141 e 1. (4.15) 

F3 is, therefore, analytic as long as jzil < 1 and y > 0. 

large y one can state that 
For its asymptotic behaviour with respect to y it is easier to use formula (4.11). For 

~ 3 ( 8 )  = -4e-Ycos28 + O(e-'y). (4.16) 

As y + 0 we expect singularities near the phase transition point because of the.vanishing 
gap; this is where our method of calculation breaks down. We propose the regularization 
my + mye-" = ,!? and to expand in a series of ,!?. This yields an asymptotic expansion 
of the form 

For small k the coefficients ax can be determined explicitly [9] and 

(4.17) 

(4.18) 

We have numerically calculated the values of the functions F3(8) for different y .  The 
results are shown in figures 2-4. 

From figures 3 and 4 one can see that F3 is close to its asymptotics except, of course, 
for the region y - 1. In general, the whole function becomes flatter with increasing y .  
Both effects can also be seen from figure 5 ,  where we show F3 as a function of y for fixed 
8. Figure 5 also shows that the general structure in the ( y 4 )  plane is rather involved. 

With the asymptotics of F3(8) it is a straightforward task to look at the behaviour of 
the energy correction in equation (4.14) for both limits: 

(4.19) 
1 

(2e-y/Z)N-{1 - 2e-Y cos28 +hoc] for y + 00 
N3/2 

and 

Formula (4.20) is only valid for N + 00 so that k;lz can still be neglected. That is just 
what we expect for smaller y ;  one needs larger and larger N to select the leading term. 

Formulae (4.6) and (4.14) can be compared with direct numerical diagonalization of 
short chains. To identify the states it is useful to recall the relation between the rapidity of 
a hole B and its momentum contribution [3]: 

(4.21) 

(4.22) 

which are completely analogous to equations (2.16) and (2.17). 

correction for the lowest state with S, = 1. 
The easiest way to proceed is to use equation (4.14) with B = n/2; this gives the energy 
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M O 1  

0:JO 

0.20 

-~.IS( 3 I I 1 1 I 1 0 0.2 0.4 0.6 0.8 1.0 1.2 Id 1.6 

U 

Figure 2 The function F&3) for 0 < 8 < X/Z and 
different Y .  

-0.15- 0 0.2 0.4 0.6 0.8 1.0 1.2 1.1 1.G 

0 '  

Figure 4. As for figure 2 but for large y .  

-0.10 

-0.16 0 0.2 U 4  0.6 0.8 1.0 1.2 1.4 1.6 

6 

Figure 3. As for figure 2 but for small y .  

6 = 0.50 
8 = 1 . 0 0 - - -  

0.10 

FslOl 0.05 _ _ _ _ - -  - - _ _ _ _ _  

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

7 

-O.l?l  ' ' ' ' ' ' I 

Figure 5. The function Fj(8)  as function of y for 
y > 0 and fixed values of 8.  

5. Conclusions 

We have calculated the finite-size energy corrections for the anisotropic Heisenberg chain 
(XXZ) in the antiferromagnetic (non-critical) region for weakly excited states. The main 
result is that this correction is qualitatively of the same value in order of N as for the 
ground state. The dependence on the hole parameters can be factorized (formulae (4.6) and 
(4.13)) and includes an oscillating and an exponential factor, as well as a general factor 
(depending on Nh). Both factors are defined using non-elementary functions described by 
Fourier series. 

We have demonstrated that in the gap region the saddle-point approximation works 
well but has to be treated with care. For states with complex roots we cannot exclude the 
influence of pole terms; these can be handled only after the corrections to higher level BAE 
are calculated. 

The corrections arising from the fact that, for finite N ,  the hole parameters 0k cannot 
be fixed arbitrarily but are discrete numbers separated by 0(1/N) have not been taken into 
account. Due to analycity with respect to 0k they produce next-to-leading corrections to 
those calculated above. 
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